1/26/2020 Industrial & Applied Mathematics

Industrial & Applied Mathematics

4-\ector.org

A Blog with Annotated R-Notebooks: Math, Statistics, and Multiphysics for Learned Peer Discussion
on the Science of Data

Discovery of a Rectangular Decision Boundary by Various Machine-Learning Algorithms

Michael A. X. Izatt

E | Michael.lzatt@Alum.MIT.Edu (mailto:Michael.lzatt@Alum.MIT.Edu)
E | izatt@UChicago.Edu (mailto:izatt@UChicago.Edu)

W | 4-Vector.org

In | www.linkedin.com/in/max-izatt

January 25, 2020
Version 2020-01-25-0930-MAl

Abstract

This article compares and contrasts the ability of three machine-learning algorithms to discover a rectangular
decision boundary in a supervised classification exercise; Support Vector Machines, Multivariate Logistic
Regression with Causal Factors, and Recursive Trees are benchmarked against a hypothetical dataset of
rectangular 2-Dimensional geometry.

Discussion

This article extends a previous article (https://4-vector.org/2020/01/22/2020-01-23-1800-mai/) on the analytical
construction of a curvilinear classification decision boundary using Multivariate Logistic Regression. During a
recent constructive LinkedIn discussion (https://www.linkedin.com/posts/davelanger_analytics-datasciece-
machinelearning-activity-6626144928084877312-hgG-) regarding the utility of Recursive Trees and high-
dimensional stochastic simulation with Trees, commonly termed “Random Forests,” it was observed that Trees
and Forests can find a non-linear decision boundary with which to classify a class. One correspondent observed
that this dexterity comes at the expense of multiple adjustable parameters and hyperparameters such that,
notwithstanding the purported “interpretability” of Trees and Forests, these powerful classification algorithms
returned very little domain knowledge of the problem set’s data-generating function; better to curate the Features
of the Analytic Data Set (ADS) and submit the ADS to Regression analysis, which returns coupling constants and
the standard error of the central tendency of those constants, which when considered in tandem, hint at the
Multiphysics of the problem set.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 1/34

1/26/2020 Industrial & Applied Mathematics

The discussion then conjectured that classifying two classes that were separated by a hypothetical rectangular
decision boundary would be difficult by regression but straight-forward by trees or forests.

All parties agreed with that conjecture’s intuition.

This article simply documents this experiment and returns it to the LinkedIn conversation for further consideration
and discussion.

Let’s get started.

Analysis
We manually created a dataset with a rectangular decision boundary and saved it to a CSV file.

Ingest the data set and examine the structure

dir_ <- 'c:\\d\\rectangular\\data’
csv_ <- 'data.csv'

file_ <- paste(dir_,csv_,sep="\\")

df_ <- read.csv(file=file_, stringsAsFactors = FALSE)

str(df_)

'data.frame’: 450 obs. of 4 variables:

¢ Item : int 123456789 10 ...

$ x : num -0.174 -1.548 -0.401 -1.859 -0.463 ...

$y :num -0.5612 -1.4956 -0.1492 -0.7482 0.0522 ...

$ class: int 1111111111...

Table the Regression ClassID.

table(df_$class)

##
1 2
150 300

There 150 points with Dataset ClassID = 1 and 300 points with Dataset ClassID = 2.

Note that the baseline Accuracy of the data is 300/450; that is, in the absense of any analysis at all, when faced
with decision-under-uncertainty, the odds favor Datasaet ClassID = 2 by a 2:1 ratio of 300/150; odds of 2:1 are a
probability

p(dataset class id = 2) = 300/(150 + 300) = 0.66667
to within one-tenth of one basis point.

Plot the data for an initial visualization.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 2/34

1/26/2020 Industrial & Applied Mathematics
filled _circle_ = 16
col_ <- c("black","red")

plot(x=df_$x, y=df_$y, type='p',col=df_$class, cex=df_$class*.5 ,pch=filled_circle_, xlab='x', y
lab="y")

legend("topleft",legend=c("1","2"),fill=col_)

< e o ® [] ® ® ®
[o %® o N ° e &
e o @ »Te * §
molet™ 8t Ua s ANl P Cee Tt
: ‘v
N ® ® ® . ¢ . . o . : b @& e
‘. ® e . ® . .. DI .o, ® '...
. hd * * L] - . * o‘. b ..
°2e & . A B o®°
> O — e . s * '.' s o .'.- SRR ° .
.. - L] L] . . . ' .
" % 2 I N A o, °
i @ o’.‘.’o’
e ¢ = ® o o0 273
. & & | ﬁ. ® .".. - o® ..
$ R R T A AR PR KRR TR B H
[[[[[
-4 -2 0 2 4
X

In a prior article (https://4-vector.org/2020/01/22/2020-01-23-1800-mai/) we applied algebraic techniques to
convert a curvilinear decision boundry to a linear one, and it is compelling to wish for similar #2-pencil-powered
prestidigitation for this rectangular boundary, but indeed no such elementary transformation is available.

There are several information-theoretical optimization algorithms available.

» Support Vector Machines (SVM) employ the renowned kernel trick to lift the 2-Dimensional Cartesian data
into a higher N-dimensional space where a [N-1]-dimensional hyperplace can demark a linear decision
boundary for clasification

» Recursive Trees (Trees) apply an information-gain metric to learn a series of business rules that are
applied programmatically to parse space in an arbitrarily-large number of rectangular regions

» Random Forests (Forests) use a set of parameters to tune a stochastic simulation of Recursive Trees to
calculate an ensemble average of classification or scoring outcomes, which is interpreted as the optimal
polling result

» Logistic Regression (Logit) computes a best multivariate linear regression line, then calculates a sigmoid
function over the line to render a classification on the linear decision boundary

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 3/34

1/26/2020 Industrial & Applied Mathematics
The purpose of this paper is two fold:
1. Confirm that SVM and Trees do indeed efficiently classify the class over the rectangular decision boundary,
and

2. Investigete under what embellishments of the Analytic Data Set (ADS) the workhorse Logit can apply a
linear decision boundary to classify the class over the rectangular decision boundary.

The Basline: Logistic Regression without Causal Factors or
Synthetic Features

As a baseline metric with which to calculate the ROI of our analytic investment, perform a zeroth-order Logit as a
classifier with no synthetic features in the ADS X. Load the class into the dependent variable and the Cartesian
abscissa and ordinate into the ADS. In the R statistical language, Logit is invoked via the Generalized Linear
Model that is linked to the binomial logit sigmoid. First, see how well Logit memorizes the training data by
calculating the multivariate coupling constants, then immediately predicting directly back on the training data itself.
As an accounting matter, the Dataset ClassID lables are reduced by integer 1 to facilitate tabling the Regression
Class and classification to observe and/or compute Accuracy. In this text, we will refer to these values as the
Regression Class 0 and 1 to eliminate confusion with the Dataset ClassIDs 1 and 2.

y_ <- df_$class

y_<-y_-1

X_ <- as.data.frame(cbind('x'=df_$x, 'y'=df_$y))

glm_ <- suppressWarnings(glm(y_ ~ ., data=X_, family=binomial(link='logit')))
y_hat_ <- suppressWarnings(predict(glm_, newdata=X_, type='response'))

table(class=y ,classifier=y hat_ >= 0.5)

#it classifier
class TRUE
#it 0 150
Hit 1 300

The Logit completely failed to classify Regression Class = 0 (= Dataset ClassID = 1). This is a complete fail to find
a decision boundary.

It is instructive to examine the prediction, y_hat_, for this calculation. It is verbose, but let’s look:

y_hat_

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 4/34

1/26/2020

##
H#
##
H##
H##
H##
H##
H#
H##
##
##
H#
##
##
H##
H#
##
H##
##
H##
##
H#
#i
H#
##
H#
##
H#
##
H#
##
H#
H##
H#
H##
H##
##
##
##
H#
##
H#
H##
H#
H##
H##
H##
##
##
H#
##
##
##

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

1

.6671400

9

.6658017

17

.6716936

25

.6667626

33

.6653208

41

.6649638

49

.6722724

57

.6649492

65

.6668324

73

.6675299

81

.6659326

89

.6668689

97

.6717503

105

.6663018

113

.6618441

121

.6620452

129

.6667584

137

.6713453

145

.6676834

153

.6562043

161

.6564526

169

.6551732

177

.6574157

185

.6562664

193

.6564459

201

.6574340

209

2

.6706157

10

.6624982

18

.6627567

26

.6631165

34

.6683443

42

.6690086

50

.6666481

58

.6661591

66

.6662745

74

.6633248

82

.6713190

920

.6645155

98

.6659637

106

.6622198

114

.6717506

122

.6654356

130

.6630400

138

.6640645

146

.6700783

154

.6573693

162

.6576926

170

.6566061

178

.6586689

186

.6581289

194

.6570284

202

.6551400

210

3

.6679165

11

.6686231

19

.6631425

27

.6656546

35

.6615812

43

.6668013

51

.6663764

59

.6685250

67

.6644213

75

.6688131

83

.6641975

91

.6647528

99

.6715346

107

.6682984

115

.6642169

123

.6709984

131

.6689442

139

.6647414

147

.6675625

155

.6583174

163

.6555580

171

.6578330

179

.6553383

187

.6577504

195

.6569517

203

.6553823

211

4

.6717399

12

.6680858

20

.6665222

28

.6700256

36

.6702535

44

.6627871

52

.6629259

60

.6650525

68

.6681631

76

.6648757

84

.6715092

92

.6639201

100

.6654784

108

.6696630

116

.6622324

124

.6626307

132

.6621094

140

.6709994

148

.6711462

156

.6569912

164

.6575720

172

.6589586

180

.6575645

188

.6561757

196

.6565474

204

.6579121

212

Industrial & Applied Mathematics

5

0.6681612

13

0.6689796

21

0.6706972

29

0.6627767

37

0.6636931

45

0.6651506

53

0.6632668

61

0.6675377

69

0.6719709

77

0.6713407

85

0.6671733

93

0.6716879

101

0.6695821

109

0.6675366

117

0.6651699

125

0.6702762

133

0.6679899

141

0.6672774

149

0.6635367

157

0.6580447

165

0.6568610

173

0.6571382

181

0.6569224

189

0.6579022

197

0.6565942

205

0.6575371

213

6

.6619200

14

.6717202

22

.6647325

30

.6656326

38

.6638693

46

.6624955

54

.6636802

62

.6656071

70

.6647829

78

.6618248

86

.6625917

94

.6644817

102

.6691288

110

.6640230

118

.6705735

126

.6620162

134

.6613184

142

.6726364

150

.6700133

158

.6560837

166

.6553687

174

.6560153

182

.6568277

190

.6574749

198

.6555913

206

.6580608

214

7

.6683355

15

.6702717

23

.6703351

31

.6653196

39

.6634601

47

.6715489

55

.6707693

63

.6698006

71

.6632572

79

.6618211

87

.6650299

95

.6620673

103

.6679456

111

.6704312

119

.6617214

127

.6669702

135

.6640638

143

.6683834

151

.6546383

159

.6590832

167

.6558436

175

.6572057

183

.6580800

191

.6566100

199

.6586986

207

.6576374

215

8

.6626110

16

.6668794

24

.6653789

32

.6668850

40

.6632668

48

.6632660

56

.6697184

64

.6620053

72

.6620780

80

.6623433

88

.6642416

96

.6712995

104

.6685005

112

.6634498

120

.6701238

128

.6710624

136

.6626581

144

.6717854

152

.6565028

160

.6553034

168

.6568845

176

.6558069

184

.6581151

192

.6571434

200

.6567887

208

.6585987

216

5/34

1/26/2020

0.
##
#it 0.
##
0.
H##
##t 0.
##
0.
##
##t 0.
##
0.
##
0.
##
#t 0.
##
0.
H##
0.
##
0.
##
0.
##
#it 0.
H##
0.
##
#it 0.
##
0.
H##
##t 0.
HH#
0.
##
0.
##
#it 0.
##
0.
##
#it 0.
##
0.
H##
##t 0.
##
##t 0.
##
0.
##

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

6580456
217
6570638
225
6581113
233
6672481
241
6695950
249
6679300
257
6654695
265
6573827
273
6678964
281
6670948
289
6629309
297
6602653
305
6775898
313
6784328
321
6745902
329
6751794
337
6783364
345
6782634
353
6770387
361
6747205
369
6748872
377
6735320
385
6671219
393
6660545
401
6679387
409
6629903
417
6698121
425

.6560849

218

.6557064

226

.6649715

234

.6610383

242

.6706480

250

.6618043

258

.6733347

266

.6619948

274

.6596658

282

.6686928

290

.6581694

298

.6675065

306

.6781510

314

.6784105

322

.6773108

330

.6765030

338

.6762520

346

.6738871

354

.6742281

362

.6779370

370

.6774157

378

.6604289

386

.6654500

394

.6703082

402

.6662754

410

.6704132

418

.6603629

426

Q.

0.

0.

Q.

.6582245

219
6553303
227

.6704079

235

.6627777

243

.6601301

251

.6716134

259

.6654569

267

.6672354

275

.6677875

283

.6717782

291
6675871
299

.6627951

307

.6780602

315

.6777385

323

.6760236

331

.6755138

339

.6746824

347

.6752380

355

.6754744

363

.6756297

371

.6769648

379

.6667434

387

.6653764

395

.6625186

403
6694380
411

.6740216

419
6756803
427

.6553360

220

.6577324

228

.6692881

236

.6581631

244

.6642084

252

.6627336

260

.6698153

268

.6641527

276

.6724435

284

.6681293

292

.6613814

300

.6608099

308

.6744969

316

.6769782

324

.6781123

332

.6756221

340

.6761455

348

.6762013

356

.6756831

364

.6765895

372

.6780111

380

.6741600

388

.6761805

396

.6655483

404

.6633103

412

.6689689

420

.6739462

428

Industrial & Applied Mathematics
0.6555772 0.6580918 0.6579318

221
0.6575541
229
0.6706159
237
0.6658808
245
0.6713994
253
0.6647902
261
0.6715184
269
0.6722601
277
0.6593968
285
0.6690993
293
0.6608681
301
0.6753078
309
0.6770489
317
0.6782538
325
0.6748582
333
0.6776142
341
0.6755231
349
0.6783605
357
0.6749621
365
0.6752550
373
0.6761374
381
0.6611590
389
0.6642092
397
0.6760268
405
0.6712899
413
0.6609386
421
0.6740121
429

222

.6553522

230

.6724206

238

.6600569

246

.6613413

254

.6632807

262

.6656844

270

.6635226

278

.6725038

286

.6596736

294

.6588502

302

.6755862

310

.6752506

318

.6784196

326

.6762823

334

.6779275

342

.6782741

350

.6763451

358

.6775801

366

.6775069

374

.6767116

382

.6662642

390

.6670106

398

.6701311

406

.6647513

414

.6635518

422

.6613328

430

223

.6570210

231

.6670146

239

.6680176

247

.6608008

255

.6642711

263

.6686190

271

.6678680

279

.6592856

287

.6602884

295

.6606325

303

.6758491

311

.6752139

319

.6787723

327

.6748920

335

.6760452

343

.6745855

351

.6754329

359

.6748173

367

.6784547

375

.6768873

383

.6666952

391

.6599577

399

.6741150

407

.6664740

415

.6701764

423

.6716664

431

Q.

Q.

Q.

.6561038

224

.6556601

232

.6726793

240

.6575896

248

.6585283

256

.6626384

264

.6593864

272

.6658060

280

.6573858

288
6714779
296

.6693360

304

.6766257

312

.6770127

320

.6754573

328

.6754879

336

.6751319

344

.6771338

352

.6768622

360

.6746359

368

.6770353

376

.6692415

384

.6733143

392

.6629776

400

.6753751

408

.6756277

416
6742149
424
6670061
432

6/34

1/26/2020 Industrial & Applied Mathematics

0.6701344 0.6738141 0.6707418 0.6628883 0.6758728 0.6741647 0.6700116 0.6678736
433 434 435 436 437 438 439 440
0.6649892 0.6659191 0.6656653 0.6719115 0.6696989 0.6703803 0.6694235 0.6659995
441 442 443 444 445 446 447 448
0.6668036 0.6705955 0.6671618 0.6651563 0.6709762 0.6603795 0.6760938 0.6631381
449 450

0.6611807 0.6727090

All 450 data points have a probability p(Regression Class = 1) = p(Dataset ClassID = 2) of ~ 0.67, which is the
default baseline probability. The Logit simply could not get a hook into the dataset’'s Data Generating Function
(DGF), and could not locate the decision boundary. When the data was tabled, all points were classified as TRUE,
which was certainly correct for the 300 Regression Class = 1 (Dataset ClassID = 2) points, but represented a
degradation of Accuracy, Precision, and Recall for the 150 Regression Class = 0 (Dataset ClassID = 1) points.

Support Vector Machine

We should experience no such trouble with the Support Vector Machine (SVM). The SVM is the crown jewel of
optimization theory. We have discussed the algorithm here (https://4-vector.org/2020/01/22/2020-01-23-1800-
mai/), so we will not repeat ourselves, save to remind the reader that the SVM'’s kernel trick serves to lift the data
into an N-Dimensional space where an [N-1]-Dimensional hyperplane can effortlessly find a hyper-linear decision
boundary with which to classify the class.

* Class 2

Class 1
oo [* Class 2 { ‘ Class 1

The SVM can be invoked in Base R via the ksvm function. We will employ the Gaussian Radial Basis Function
kernel, which is an exponential, the Taylor expansion of which contains all powers of the abscissa and ordinate
and which converges for all values of the same. At run time, the SVM creates all powers of x and y as synthetic
features in the Analytic Data Set. The algorithm will certainly be able to draw the decision boundry’s hyperplane to
classify the class.

First calculate the SVM, then immediately predict the training data to observe how well the classifier memorizes
the class.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 7134

1/26/2020 Industrial & Applied Mathematics
y_ <- df_$class
y_<-y_-1
X_ <- as.data.frame(cbind(df_$x, df_$y))
ksvm_ <- ksvm(y_ ~ ., data=X_,kernel="rbfdot")
y_hat_ <- predict(ksvm_, newdata=X_, type='response')

table("class"=y_, "classifier" =y hat_ >= 0.5)

classifier

class FALSE TRUE
#H# 0 150 0
1 0 300

As expected, The powerful SVM, with the Radial Basis kernel, perfectly memorized the class on the rectangular
decision boundary. Query whether it can classify unseen data.

First we assign a random double-precision number to the ADS, then partition a 65/35 training/testing split. Then
we calculate the ksvm on the training set and predict on the testing set before tabling the data and observing
Accuracy, Precision, and Recall, which are functions of the False Positive and False Negative rates. We seed the
pseudo-random number generator with the integer 137, which is the reciprocal of the quantum-mechanical fine-
structure constant. It was also the author’s minor-league baseball batting average.

n_ <- nrow(df_)
set.seed(137)
runif_ <- runif(n_, 0,1)

which_train_ <- which(runif_ <= 0.65)
which_test_ <- which(runif_ > 0.65)

y_ <- df_[which_train_, 'class’]

y_<-y_-1

X_ <- as.data.frame(cbind(df_[which_train_, 'x"'], df_[which_train_,'y']))
ksvm_ <- ksvm(y_ ~ ., data=X_,kernel="'rbfdot")

y_hat_ <- predict(ksvm_, newdata=X_, type='response')

table("class"=y_, "classifier" = y_hat_ >= 0.5)

#H# classifier

class FALSE TRUE
0 100 0
1 0 192

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 8/34

1/26/2020 Industrial & Applied Mathematics

Again, the SVM memorized the training data perfectly. Now let’'s see how well it can predict on the testing data.
y_ <- df_[which_test_,'class']

y_<-y_-1

X_ <- as.data.frame(cbind(df_[which_test_, 'x"'], df_[which_test_,'y']))
y_hat_ <- predict(ksvm_, newdata=X_, type='response')

table("class"=y_, "classifier" = y_hat_ >= 0.5)

#it classifier
class FALSE TRUE
it 0 50 (%]
#H# 1 0 1e8

Well, there you have it! The powerful Support Vector Machine, with its famed Gaussian Radial Basis Function
kernel, was able to perfectly classify the class for unseen, withheld test data over a complex rectangular decision
boundary. Very, very impressive, indeed! It is important to note that the SVM has no domain knowledge
whtasoever of the data-generating function of the problem set, which is impressive, indeed, but contrariwise, it can
teach us nothing about the Multiphysics of the problem. If there is cause upstream from the effect, we have no
hope of finding it with the Support Vector Machine. The blessing is the curse.

Recursive Trees

Let's move on to the Recursive Trees algo, which partitions rectangular space via an information-theoretic metric
to score or classify.

In the R statistical language, Recursive Trees are exposed as optimized C++ classes in the recursive-partitioning
rpart package. Rpart calculates the information gain at each node and scores or classifies the leaves. Rendering
the decision tree itself to the R video layer requires the Recursive Partitioning Plot rpart.plot library.

The prediction resultant differes slightly from other classification algos that return the classifier’s estimation that the
probability of the class is 1; that is, to say that the Logit, for example, is 0.71125 is to say that the Logit sigmoid
evaluates to p(Regression Class = 1) = p(Dataset ClassID = 2) = 71.125%. However, the CART recursive-
partitioning algo returns the not only the proability that the Regression Class = 1, but also the probability that the
Regression Class = 0. To evaluate the prediction and make a classification for our confusion matrix, we then must
ask the prediction matrix which value is larger, and classify the Regression Class based on this business rule.

Because of the way that recursive trees work to partition rectangular space, we expect that they will fit a
rectangular decision boundary perfectly, and indeed, we expect that it will have a perfect showing in this problem
set, so as a gauge metric, let’s take a quick detour and try to make the Trees fail. This way, we will have
confidence that a strong classification via recursive trees on the rectangular problem set is a valid machine-
learning effect and not some overfitting anomaly.

To fool Recursive Trees, let’s introduce a curvy rather than rectilinear dataset.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 9/34

1/26/2020 Industrial & Applied Mathematics
Trees on Curvilinear Data

The kernlab spirals data set (https://cran.r-project.org/web/packages/kernlab/index.html) is curvilinear in nature,
and our expectation is that spirals will completely frustrate Trees and Forests alike. Let’s load spirals and levelset.

dir_spirals_ <- "c:\\d\\spirals\\write.csv"
csv_spirals_ <- "df_spirals.csv"
file_ <- paste(dir_spirals_, csv_spirals_,sep="\\")

df_spirals_ <- read.csv(file=file ,stringsAsFactors = FALSE)

str(df_spirals_)

'data.frame': 300 obs. of 4 variables:

¢ item : int 1234567 89 10 ...

$ x : num ©.812 -0.268 0.374 0.258 -0.847 ..

$y : num -0.9871 -0.3255 -0.0129 0.0413 0.3294 ...

¢$ class: int 1122122212 ...

We discussed the spirals dataframe at length in a previous writing (https://4-vector.org/2020/01/22/2020-01-23-
1800-mai/), referenced supra. It comprises two interlaced Archimedes spirals, which are linear in polar coordinates
and within a simple transformation of being linear in Cartesian space.

filled_circle_ = 16
col_ <- c("black","red")

plot(x=df_spirals_$x, y=df_spirals_$y, type='p',col=df_spirals_$class, cex=df_spirals_$class*.5
spch=filled_circle_, xlab='x', ylab='y")

legend("topleft"”,legend=c("1","2"),fill=col_)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 10/34

1/26/2020

Industrial & Applied Mathematics

L ®e®0,°"%
S m2 ¥ #%°) "t ..,
...oo..'. e []
... '.o.. * '.o. ., hd :.
i . o . o0 o % ® .. e
° 00.. . '.. 03:. ¢ .%‘~§. ..' .‘.o
P ‘. o . ” ©
S = ¢ 3 E .’.. 5 o%.. .‘._ 0..
o o.:..‘ .‘. .. -
. i .’ :o: oo'.o. ... :
o) | .o ?‘ '0.‘...... ... * 2.o
CI)$ e LI) " & .: o. -
o. @ @ .. .+ *
o "8 o . ® 0000000, '.
I I I I I
-1.0 -0.5 0.0 0.5 1.0
X

Our expectation is that Trees will have a Devil of a time finding this curvilinear decision boundary, which should be

characterized by a flood of False Negative and False Positive classifications of the class. Remember that in our
coding standards and Agile work program and road maps, we always begin by oberving how well the supervised
method memorizes the dataset; that is, treating the dataset itself as a training set and predicting right back on
itself, we observe how well the algo memorizes the labeled data. Let’'s see how Recursive Trees do in this regard.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

11/34

1/26/2020 Industrial & Applied Mathematics
Library(caret)
Library(rpart)
Library(rpart.plot)
y_ <- df_spirals_$class
y_<-y_-1
X_ <- as.data.frame(cbind('x'=df_spirals_$x, 'y'=df_spirals_$y))
rpart_ <- rpart(y_ ~ .,data = X_, method = 'class"')
predict_ <- predict(rpart_,newdata=X_)
n_ <- length(y_)
y_hat_ <- vector("numeric",n_)
y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

1}

table(y_,y_hat_)

#it y_hat_

#y_ o 1
0 140 10
1 13 137

Frankly, this is absolutely astonishing! By parsing 2-Space, Trees correctly identified all but 23 of the memorized
training data. This is especially impressive since the decision boundary is clearly curvilinear and Trees must parse
space rectangularly. We can observe just how hard Trees had to work by plotting the Decision Tree itself.

plot(rpart_, uniform=TRUE)
text(rpart_, use.n=TRUE, all=TRUE, cex=.8)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 12/34

1/26/2020

Industrial & Ap

plied Mathematics

y< -0/8893

U
101/51

y>=-0.5804

23/0

U
78/51

x>=-0.4034 X<

y= U.EI Uy
150/150

-0{3944

y< 08861

y>=0[5619

49/99

49/76

x< 0{506

x>=(.429

U
68/25

x<0J/435 x<

-0{8192

U
58/11

10/14 5/2

10/26

x>=0

6859 x>=-0

U
26/11

6378

x<08141 x<-0

23/65

5/24

U U
25/5 1/6 13/8

10757

This Decision Tree is certainly much more petite than it might have been, but careful study of it and the associated
business rules would show that Trees is working very hard. Many proponents like trees for their interpretability, and
that is true as far as it goes, but query whether you would like to make a decision under uncertainty with these fifty-

five rules as your heuristics?

summary (rpart_)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

13/34

1/26/2020 Industrial & Applied Mathematics

Call:

rpart(formula = y_~ ., data = X_, method = "class")
n= 300

##

H## CP nsplit rel error xerror xstd
1 0.33333333 0 1.0000000 1.0933333 0.05748301
2 0.065333333 1 0.6666667 0.7266667 0.05553644
3 0.05000000 3 0.5600000 0.6733333 0.05456766
4 0.04666667 5 0.4600000 0.6733333 0.05456766
5 0.04333333 7 0.3666667 0.6466667 0.05401097
6 0.03333333 9 0.2800000 0.5266667 0.05085783
7 0.02000000 10 0.2466667 0.4600000 0.04859355
8 0.01333333 14 0.1666667 0.4666667 0.04883836
9 0.01000000 15 0.1533333 0.4533333 0.04834444
#it

Variable importance

#H# x y

56 44

#it

Node number 1: 300 observations, complexity param=0.3333333
predicted class=0 expected loss=0.5 P(node) =1

class counts: 150 150

#it probabilities: ©.500 0.500

left son=2 (152 obs) right son=3 (148 obs)

Primary splits:

it y < 0.01108812 to the left, improve=16.669630, (0 missing)

#it X < -1.0970137 to the right, improve= 4.639175, (© missing)

Surrogate splits:

it X < -0.4482403 to the right, agree=0.563, adj=0.115, (9@ split)
##

Node number 2: 152 observations, complexity param=0.05333333
predicted class=0 expected loss=0.3355263 P(node) =0.5066667
#it class counts: lo1 51

probabilities: 0.664 0.336

left son=4 (23 obs) right son=5 (129 obs)

Primary splits:

#i#t y < -0.889302 to the left, improve=6.101897, (© missing)
X < -0.7359095 to the left, improve=3.471968, (@ missing)
##

Node number 3: 148 observations, complexity param=0.05

predicted class=1 expected loss=0.3310811 P(node) =0.4933333
class counts: 49 99

H## probabilities: ©0.331 0.669
left son=6 (125 obs) right son=7 (23 obs)
Primary splits:

it y < 0.8860759 to the left, improve=5.970054, (@ missing)
it X < 0.7604205 to the left, improve=2.862878, (© missing)
#Hi#

Node number 4: 23 observations
predicted class=0 expected loss=0 P(node) =0.07666667

class counts: 23 0
#it probabilities: 1.000 ©.000
#H#

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 14/34

1/26/2020 Industrial & Applied Mathematics

Node number 5: 129 observations, complexity param=0.05333333
predicted class=0 expected 10ss=0.3953488 P(node) =0.43

class counts: 78 51

probabilities: 0.605 ©.395

left son=10 (93 obs) right son=11 (36 obs)

Primary splits:

y < -0.5803962 to the right, improve=10.670830, (© missing)
#it X < -0.7359095 to the left, improve= 4.909201, (@ missing)
##

Node number 6: 125 observations, complexity param=0.05

predicted class=1 expected 10ss=0.392 P(node) =0.4166667

class counts: 49 76

H## probabilities: 0.392 0.608
left son=12 (37 obs) right son=13 (88 obs)
Primary splits:

it y < 0.5618536 to the right, improve=10.147270, (@ missing)
X < 0.7604205 to the left, improve= 4.079575, (@ missing)
#i

Node number 7: 23 observations
predicted class=1 expected loss=0 P(node) =0.07666667

#i class counts: 0 23
#it probabilities: ©.000 1.000
##

Node number 10: 93 observations, complexity param=0.04666667
predicted class=0 expected 10ss=0.2688172 P(node) =0.31

class counts: 68 25

probabilities: 0.731 0.269

left son=20 (69 obs) right son=21 (24 obs)

Primary splits:

it X < -0.4034077 to the right, improve=6.3997190, (@ missing)

it y < -0.2380596 to the left, improve=0.4258065, (© missing)

Surrogate splits:

#it y < -0.5318457 +to the right, agree=0.753, adj=0.042, (9 split)
#i

Node number 11: 36 observations, complexity param=0.02

predicted class=1 expected 10ss=0.2777778 P(node) =0.12

H## class counts: 10 26

#it probabilities: 0.278 0.722
left son=22 (7 obs) right son=23 (29 obs)
Primary splits:

#i# X < -0.3943665 to the left, improve=3.3114400, (© missing)
#it y < -0.8105643 to the right, improve=0.8752137, (© missing)
#H#

Node number 12: 37 observations, complexity param=0.03333333
predicted class=0 expected 10ss=0.2972973 P(node) =0.1233333
class counts: 26 11

#it probabilities: 0.703 0.297

left son=24 (30 obs) right son=25 (7 obs)

Primary splits:

X < 0.505958 to the left, improve=5.411840, (0 missing)

y < 0.7877383 to the right, improve=1.074366, (@ missing)

Surrogate splits:

it y < 0.5732131 to the right, agree=0.865, adj=90.286, (0 split)
H##

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 15/34

1/26/2020

Node number 13: 88 observations,
predicted class=1 expected loss=0.2613636 P(node) =0.2933333

##
##
##
##
H##
##
##
##
##
##
##
##
##
##
##
H##
##
##
H##
H##
##
#H#
##
##
##
##
H##
H##
##
H##
##
H##
H##
H##
HH#
##
##
##
##
##
##
##
##
H##
##
##
H##
#i
##
##
##
##
##

class counts: 23 65
probabilities: 0.261 0.739
left son=26 (21 obs) right son=27
Primary splits:
X < 0.4290291 to the right,
y < 0.3323563 to the left,

Node number 20: 69 observations,

Industrial & Applied Mathematics
complexity param=0.04333333

(67 obs)

improve=7.0575850, (@ missing)
improve=0.3561547, (@ missing)

complexity param=0.02

predicted class=0 expected loss=0.1594203 P(node) =0.23

class counts: 58 11
probabilities: 0.841 0.159
left son=40 (52 obs) right son=41
Primary splits:
X < 0.7435409 to the left,
y < -0.06395763 to the left,

Node number 21: 24 observations,

(17 obs)

improve=8.2959210, (© missing)
improve=0.8411143, (0@ missing)

complexity param=0.04666667

predicted class=1 expected loss=0.4166667 P(node) =0.08

class counts: 10 14
probabilities: 0.417 ©.583
left son=42 (10 obs) right son=43
Primary splits:
X < -0.81921 to the left,
y < -0.2648876 to the right,
Surrogate splits:
y < -0.5286711 to the left,

Node number 22: 7 observations

(14 obs)

improve=11.6666700, (@ missing)
improve= 0.2380952, (@ missing)

agree=0.625, adj=0.1, (@ split)

predicted class=0 expected loss=0.2857143 P(node) =0.02333333

class counts: 5 2
probabilities: 0.714 0.286

Node number 23: 29 observations,

complexity param=0.02

predicted class=1 expected loss=0.1724138 P(node) =0.09666667

class counts: 5 24
probabilities: 0.172 0.828

left son=46 (7 obs) right son=47 (22 obs)

Primary splits:
X < 0.6858614 to the right,
y < -0.8105643 to the right,
Surrogate splits:
y < -0.6348078 to the right,

Node number 24: 30 observations,

improve=5.4187190, (@ missing)
improve=0.7758621, (@ missing)

agree=0.828, adj=90.286, (@ split)

complexity param=0.02

predicted class=0 expected loss=0.1666667 P(node) =0.1

class counts: 25 5
probabilities: 0.833 0.167
left son=48 (23 obs) right son=49
Primary splits:
X < -0.6378051 to the right,
y < 0.7877383 to the right,
Surrogate splits:

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

(7 obs)

improve=5.4761900, (@ missing)
improve=0.3695324, (0 missing)

16/34

1/26/2020 Industrial & Applied Mathematics
#i#t y < 0.6408703 to the right, agree=0.867, adj=90.429, (@ split)
##
Node number 25: 7 observations
predicted class=1 expected 1oss=0.1428571 P(node) =0.02333333

class counts: 1 6
H## probabilities: 0.143 0.857
#H#

Node number 26: 21 observations, complexity param=0.04333333
predicted class=0 expected loss=0.3809524 P(node) =0.07

#it class counts: 13 8

#i#t probabilities: 0.619 0.381

left son=52 (13 obs) right son=53 (8 obs)

Primary splits:

X < 0.8140997 to the left, improve=9.9047620, (@ missing)
#it y < 0.3968352 to the right, improve=0.1904762, (© missing)
#it

Node number 27: 67 observations, complexity param=0.01333333
predicted class=1 expected 10ss=0.1492537 P(node) =0.2233333
#i# class counts: 10 57

H## probabilities: 0.149 0.851

left son=54 (18 obs) right son=55 (49 obs)

Primary splits:

#i X < -0.7248075 to the left, improve=8.1260360, (0 missing)
#it y < 0.1680251 to the left, improve=0.1496963, (© missing)
#it

Node number 40: 52 observations
predicted class=0 expected 10ss=0.01923077 P(node) =0.1733333

#H# class counts: 51 1
#it probabilities: ©.981 0.019
#H#

Node number 41: 17 observations
predicted class=1 expected 1loss=0.4117647 P(node) =0.05666667

#it class counts: 7 10
H#it probabilities: ©0.412 ©.588
#i

#t# Node number 42: 10 observations
predicted class=0 expected loss=0 P(node) =0.03333333

class counts: 10 0
#it probabilities: 1.000 ©.000
#i#

Node number 43: 14 observations
predicted class=1 expected loss=0 P(node) =0.04666667

class counts: 9] 14
H## probabilities: ©0.000 1.000
#H#

Node number 46: 7 observations
predicted class=0 expected loss=0.2857143 P(node) =0.02333333

i class counts: 5 2
#it probabilities: 0.714 0.286
#H#

Node number 47: 22 observations

predicted class=1 expected loss=0 P(node) =0.07333333
class counts: 0 22

probabilities: 0.000 1.000

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 17/34

1/26/2020 Industrial & Applied Mathematics

#
Node number 48: 23 observations
predicted class=0 expected loss=0 P(node)

i class counts: 23 0
#it probabilities: 1.000 ©.000
#H#

Node number 49: 7 observations
predicted class=1 expected 1loss=0.2857143

class counts: 2 5
#it probabilities: 0.286 0.714
#

Node number 52: 13 observations
predicted class=0 expected loss=0 P(node)

e class counts: 13 0
#it probabilities: 1.000 ©.000
#H#

Node number 53: 8 observations
predicted class=1 expected loss=0 P(node)

class counts: 0 8
H## probabilities: ©0.000 1.000
#H#

#t# Node number 54: 18 observations
predicted class=0 expected loss=0.4444444

class counts: 10 8
#it probabilities: 0.556 0.444
#H#

Node number 55: 49 observations

predicted class=1 expected loss=0 P(node)
#it class counts: 0 49

#i probabilities: ©0.000 1.000

=0.07666667

P(node) =0.02333333

=0.04333333

=0.02666667

P(node) =0.06

=0.1633333

If that prospect makes you happy, then | am happy for you. Better you than me.

Notwithstanding the complexity of the decision heuristics, the ability of Trees to classify a curvilinear decision
boundary with rectangular parsing is indeed impressive, at least when memorizing under the supervision of a

labeled data set.

Let's see whether this remarkable success continues when we ask Trees to predict heretofore unseen, withheld,
testing data. Following our road map, parse the data into training and testing datasets on a 65/35 split and repeat

our benchmark by predicting on the memorized training data once again.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

18/34

1/26/2020 Industrial & Applied Mathematics
n_ <- nrow(df_spirals_)
set.seed(137)
runif_ <- runif(n_, 0,1)

which_train_ <- which(runif_ <= 0.65)
which_test_ <- which(runif_ > 0.65)

y_ <- df_spirals_[which_train_, 'class']

y_<-y_ -1

X_ <- as.data.frame(cbind(df_spirals_[which_train_, 'x'], df_spirals_[which_train_,'y']))
rpart_ <- rpart(y_ ~ .,data = X_, method = 'class")

predict_ <- predict(rpart_,newdata=X_)

n_ <- length(y_)

y_hat_ <- vector("numeric",n_)

y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

)

table_ <- table(y_,y_hat)

table_

y_hat_

Hty_ (4] 1
0 102 3
1 22 71

accuracy_ <- sum(diag(table_))/sum(table_)

print(noquote(" "))

[1]

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 19/34

1/26/2020 Industrial & Applied Mathematics

print(paste("The accuracy on the training set is:",accuracy_,sep=" "))

[1] "The accuracy on the training set is: ©.873737373737374"

Trees is about 87% accurate on the memorized training data. Now predict on the unseen, withheld, testing data. If
the Accuracy degrades, then these data are overfit and we must reconsider Trees as a robust classifier of this
curvilinear data.

y_ <- df_spirals_[which_test_, 'class']

y_<-y_-1

X_ <- as.data.frame(cbind(df_spirals_[which_test_, 'x'], df_spirals_[which_test_,'y"']))

predict_ <- predict(rpart_,newdata=X_)

n_ <- length(y_)

y_hat_ <- vector("numeric",n_)

y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

1}

table_ <- table(y_,y_hat_)

table_
#it y_hat_
#y_ 0 1
0 40 5

1 20 37

accuracy_ <- sum(diag(table_))/sum(table_)

print(noquote(" "))

[1]

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 20/34

1/26/2020 Industrial & Applied Mathematics

print(paste("The accuracy on the testing set is:",accuracy_,sep=" "))

[1] "The accuracy on the testing set is: 0.754901960784314"

The Accuracy did indeed degrade, but it is not a terribly drastic degradation. However, the reduction from 87% to
75% Accuracy does indicate that the Trees algorithm is struggling to make the classification. So Trees does not
stand on all fours as a robust classifier over this curvilinear decision boundary, however, it is rather impressive that
the algo does this well. | would not hesitate to include Trees in a stacked and boosted solution set; when paired
with other classifiers, | should think that the stacked and boosted solution would benefit from Trees’ vote in the
ensemble polling.

But Trees’ Accuracy did significantly degraded on the unseen, withheld, testing data, which suggests that its
performance on the training data is overfit. Trees has a number of tunable parameters that can mitigate overfitting,
but the tuning would move toward the testing Accuracy of 75% rather than toward the training Accuracy of 87%;
because of way that Trees parses space, it has a very hard time honing in on the business rules around a
curvilinear data generating function, and remember that those business rules are fifty-five in number, and do not
necessarily scale to the general case.

HOWEVER, Trees’ clumsiness with curvilinear data does not impugn its dexterity and robustness with rectilinear
data! Remember, we hazed Trees immediately above exactly so that we would know Trees’ success when we saw
it. Let’s let Trees shine now by pivoting back to our rectangular data set and let's watch Trees show off for us.

Trees on Rectangular Data

Ok, with this gauge metric in mind, let’s let Trees shine. If it is true that Trees is challenged with a curvilinear
decision boundary because it parses space rectangularly, perhaps it follows that it would excel with a rectangular
decision boundary, and this indeed was the sentiment of the LinkedIn colleagues
(https://www.linkedin.com/posts/davelanger_analytics-datasciece-machinelearning-activity-
6626144928084877312-hgG-). Let’'s see whether Trees is up to the challenge.

Let's continue with our work plan to see how well the CART algo memorizes the class. Back to our rectangular
data frame, df_. Following our work program, let's watch Trees memorize the data set in its entirety as training
data.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 21/34

1/26/2020 Industrial & Applied Mathematics
y_ <- df_$class
y_<-y_-1
X_ <- as.data.frame(cbind('x'=df_$x, 'y'=df_$y))
rpart_ <- rpart(y_ ~ .,data = X_, method = 'class"')
predict_ <- predict(rpart_,newdata=X_)
n_ <- length(y_)
y_hat_ <- vector("numeric",n_)
y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

1}

table(y_,y_hat)

y_hat_

#y o0 1
0 150 ©
1 0 300

Wow! Now Trees is on its home turf! It memorized the rectangular data perfectly and drew a perfect rectangular
decision boundary!

Following the work plan, let's now parse the data and see how Trees does over the rectangular boundary when
predicting on heretofore unseen, withheld, testing data. We will parse training and testing data and watch Trees
memorize the training data, then challenge it to predict the testing data. Here we go:

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 22/34

1/26/2020 Industrial & Applied Mathematics
n_ <- nrow(df_)
set.seed(137)
runif_ <- runif(n_, 0,1)
which_train_ <- which(runif_ <= 0.65)
which_test_ <- which(runif_ > 0.65)
y_ <- df_[which_train_, 'class’]
y_<-y_-1
X_ <- as.data.frame(cbind('x'=df_[which_train_, 'x'], 'y'=df_[which_train_,'y"']))
rpart_ <- rpart(y_ ~ .,data = X_, method = 'class"')
predict_ <- predict(rpart_,newdata=X_)
n_ <- length(y_)
y_hat_ <- vector("numeric",n_)
y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

)

table_ <- table(y_,y_hat)

table_

##t y_hat_

#y o 1
H## 0 100 0
H## 1 0 192

accuracy_ <- sum(diag(table_))/sum(table_)

print(noquote(" "))

[1]

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 23/34

1/26/2020 Industrial & Applied Mathematics

print(paste("The accuracy on the training set is:",accuracy_,sep=" "))

[1] "The accuracy on the training set is: 1

One again, Trees perfectly memorizes the training data, this time on the bifurcated training data subset.

Note that there are 292 observations in the training data. We will see that number parsed piecemeal leaf-by-leaf
in the business rules infra.

Let’s predict on the heretofore, unseen, withheld, testing data.
y_ <- df_[which_test_, 'class']

y_<-y_-1

X_ <- as.data.frame(cbind('x'=df_[which_test ,'x'], 'y'=df_[which_test_,'y']))

predict_ <- predict(rpart_,newdata=X_)

n_ <- length(y_)

y_hat_ <- vector("numeric",n_)

y_hat_ <- apply(predict_,1,FUN=function(x){

if(x[1] >= x[2]){

} else {

1}

table_ <- table(y_,y_hat_)

table_

#it y_hat_

#y 0 1
© 50 o
1 0 1e8

accuracy_ <- sum(diag(table_))/sum(table_)

print(noquote(" "))

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 24/34

1/26/2020 Industrial & Applied Mathematics

[1]

print(paste("The accuracy on the training set is:",accuracy_,sep=" "))

[1] "The accuracy on the training set is: 1"

Wow! Trees had perfect performance on the testing data! Clearly Recursive Trees is a powerful algorithm for
discerning a rectangular decision boundary in a binary classification problem set.

Query to what degree Trees are interpretable on such a decision boundary. Remember, the business rules were
challenging above when Trees had to rectangularly parse curvilinear data, but Trees is on its home turf now with a
rectangular boundary. Let’s view a summary of the rpart object. First, let’s plot the data again right here so that we
can reference it as we marvel at Trees dexterity with this problem set.

filled_circle_ = 16
col_ <- c("black","red")

plot(x=df_$x, y=df_$y, type='p',col=df_$class, cex=df_$class*.5 ,pch=filled circle_, xlab='x', y
lab="y")

legend("topleft",legend=c("1","2"),fill=col_)

< e o ® L] ®) ®
[o 5 0..“ ’ "‘. LY 0.. f
m2fpi ™ s W SRS S e
R g
o= B . ‘ . . . ® %
: ® . ¥ * D T . 9
° . .) " . .".' % o*
*2, Lo * ee . T e Pl
> O [] i & % ¢ o... JETN Sa0 0 o* * .. .
® . e ot R *
® e, & L L e RN . .
o q». qnp"' S :.) : .) e’ S ’ .
' . ® “ ce® _ %
oy % ¢ « ® ° o9 o....‘
. ® y- s 3 ® o 8%, v ¥ *
¥ Lt r“of‘d .0.0’.” * N A & M
[[[[[
-4 -2 0 2 4
X

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 25/34

1/26/2020 Industrial & Applied Mathematics

Here is the summary of the rpart recursive-partitioning object. Look at this report as the business rules that Trees
has learned as it calculated the information gain at each node. Note that Node number 1 begins with the 292
observations that we observed in the training data on which the rpart object was calculated.

summary (rpart_)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 26/34

1/26/2020

##
H#
##
H##
H##
H##
H##
H#
H##
##
##
H#
##
##
H##
H#
##
H##
##
H##
##
H#
#i
H#
##
H#
##
H#
##
H#
##
H#
H##
H#
H##
H##
##
##
##
H#
##
H#
H##
H#
H##
H##
H##
##
##
H#
##
##
##

Industrial & Applied Mathematics

Call:
rpart(formula = y_ ~ ., data = X_, method = "class")

n= 292
CP nsplit rel error xerror xstd
1 0.285 (7] 1.00 1.00 0.081088485
2 0.240 2 0.43 0.45 0.061696895
3 0.190 3 0.19 0.21 0.044147170
4 0.010 4 0.00 0.01 0.009982862
Variable importance

y X
53 47
Node number 1: 292 observations, complexity param=0.285
predicted class=1 expected loss=0.3424658 P(node) =1
class counts: 100 192
probabilities: 0.342 0.658
left son=2 (216 obs) right son=3 (76 obs)
Primary splits:
y < -1.988228 +to the right, improve=24.09944, (© missing)
X < -1.911714 to the right, improve=19.22615, (@ missing)
Node number 2: 216 observations, complexity param=0.285
predicted class=1 expected loss=0.462963 P(node) =0.739726
class counts: 100 116
probabilities: 0.463 0.537
left son=4 (143 obs) right son=5 (73 obs)
Primary splits:
y < 1.999106 to the left, improve=47.26755, (@ missing)
X < -1.911714 to the right, improve=25.05447, (© missing)
Surrogate splits:
X < 3.345415 to the left, agree=0.685, adj=0.068, (0 split)
Node number 3: 76 observations

predicted class=1 expected loss=0 P(node) =0.260274
class counts: 0 76
probabilities: ©0.000 1.000
Node number 4: 143 observations, complexity param=0.24
predicted class=0 expected loss=0.3006993 P(node) =0.489726
class counts: 100 43
probabilities: 0.699 0.301
left son=8 (119 obs) right son=9 (24 obs)
Primary splits:
X < -2.424606 to the right, improve=28.207090, (0 missing)
y < -0.2684122 to the right, improve= 1.678322, (© missing)

Node number 5: 73 observations
predicted class=1 expected loss=0 P(node) =0.25

class counts: 0 73

probabilities: ©0.000 1.000

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

27/34

1/26/2020 Industrial & Applied Mathematics

Node number 8: 119 observations, complexity param=0.19
predicted class=0 expected 10ss=0.1596639 P(node) =0.4075342
class counts: 100 19

probabilities: ©.840 0.160
left son=16 (100 obs) right son=17 (19 obs)
Primary splits:

X < 2.475763 to the left, improve=31.9327700, (@ missing)
y < -0.4372953 to the right, improve= ©.8594871, (@ missing)
##

Node number 9: 24 observations
predicted class=1 expected loss=0 P(node) =0.08219178

H class counts: 0 24
H## probabilities: ©0.000 1.000
##

Node number 16: 100 observations
predicted class=@ expected loss=0 P(node) =0.3424658

class counts: 100 (%}
probabilities: 1.000 ©.000
#H#

Node number 17: 19 observations

predicted class=1 expected loss=0 P(node) =0.06506849
#i# class counts: 0 19

#it probabilities: ©0.000 1.000

Note 17 rules this time for the rectangular data in contrast to the 55 rules for the spiral data, above. The business
rules are involved, but not intractable. We can get a good overall impression of rules if we examine the Tree itself.
The top node recites the running total of the unassigned Regression classes (100 Regression Class 0’'s and 192
Regression Class 1’s at the outset, as can be observed in the training data’s confusion matrix) and asks the
conditional, “Is the training class ordinate greater than or equal to -1.988?” If not then assign the point to
Regression Class 1 for now. In the first leaf, 76 points that are below the line y = -1.988 are classified as red
Regression Class 1 (= Dataset ClassID 2. We subtracted 1, remember, for computational ease within the algos.)

In the second node, Trees, using information gain on the condition y < 1.999, classifies a further 73 points that are
above the line as red Regression Class 1 (= Dataset ClassID 2.), for now. Consult the plot above to convince
yourself that is correct.

In the third node, Trees make a decision on the rule x >=-2.425. If no, then the points are correcly classified as red
Regression Class 1 (= Dataset ClassID 2). So Trees is saying, “of the points that are above y =-1.988 and below y
=1.999, those that are left of x = 2.425 are red,” and indeed that is correct.

Finally, Trees interrogates the data at x < 2.476. Now, remember, it has already classified almost all of the red
dots. This last node correctly classifies the final 19 red Regression Class 1 dots, which leaves the 100 black
Regression Class 0 dots.

The remaining 100 dots that have survived these buisness rules are correctly classified as black Regression Class
0 (= Dataaset ClassID 1).

Trees has performed beautifully on this rectangular decision boundary.

plot(rpart_, uniform=TRUE)
text(rpart_, use.n=TRUE, all=TRUE, cex=.8)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 28/34

1/26/2020 Industrial & Applied Mathematics

Y=z E .J00
i
100/192
y< 11999
100/116 0/76
x>=-.425
U
100/43 0173
x< 2|476
U
100/19 0/24

There is a lot going on in this object; the business rules are absolutely straight-forward, and to be sure, they are
involved, but if you read the business rules and study the tree while referencing the plot of of the dataset, above,
you will convince yourself that Trees was able to apply information gain perfectly to discover the rectangular
decision boundary and classify the class.

Random Forests

Given the success of Recursive Trees on this rectangular decision boundary, we will not needlessly torture the
matter with Random Forests, which are effectively a hyperparametric-tuned, bootstrapped, cross-validated,
stochastic simulation of many Recursive Trees to calculate an ensemble average of Node and Leaf assignments
over many iterations of the Trees algo, all while applying tunable parameters for cross validation, information-gain
metric, bootstrapping, and voting.

Random Forest directly applies the wisdom of Galton’s crowds, whereby Galton observed that the measure of
central tendency of votes from a large crowd will be more accurate than the vote of any given member. By
repeatedly recalculating the Recursive Tree with cross-validated random draws of rows and bootlegged random
selections of features, and averaging the classifications or scores, the algo will average outcomes via a voting or
polling methodology (many use the term “amalamalgamate” the outcomes), which will be more stable and
accurate than any given Tree’s prediction.

Many analysts prefer Random Forrests and see their role as business- and quantitative-analysts as parameter and
hyperparameter tuning to extract the best performance from the Forests. Others see this exercise as anything but
fundimental to the Multiphysics of the probelem set and do not consider hyperparameter tuning as valuable to the

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 29/34

1/26/2020 Industrial & Applied Mathematics

science of data. No number of hyperparamaters amounts to even a modicum of understanding of the maths or
physics of the problem set’s data-generating function. And while machine-learning technicians debate this religious
issue, no scientist is confused on this matter.

And for good reason. The great mathmatician, Freeman Dyson, discusses his conversation with Enrico Fermi
about adjustable parameters in the absense of strong axiomatic mathematics or a compelling physical theory.
Dyson’s model of the strong interaction had four adjustable parameters with which to reproduce the experimental
findings of early quantum electrodynamic effects. In an instant, Fermi mooted Dyson’s entire research program for
the pseudo-scalar theory of pions which purported to explain the strong interaction, and indeed, Fermi was correct;
Gelmann’s ab initio two-quark theory eventually explained the affect without the need for parametric
prestidigitation.

So while we respect base Trees and Forests for their preternatural ability to parse rectangular space, we are very
distrustful of tunable parameters. Whenever you find yourself tuning parameters and hyperparameters, you are
nothing but a puppet master who is manipulating von Neumann’s elephant, and the laughter you hear is Fermi’s
ghost as your audience.

So what to do? If the SVM can learn any decision boundary but gives no business insight in the process, if Trees &
Forests return business rules but may require parametric and hyperparametric tuning, where can we turn if we
wish to fit a difficult decision boundary and, receive statistical advice on our classsification, and have the
opportunity to learn something of our problem set’s data-generating function?

The secret lies in the nature of the SVM’s Gaussian Radial Basis kernel and using this powerful idea to craft
synthetic features and apply business analysis to identify causal factors of the Data Generating Function for the
problem set.

Recall that the Radial Basis Function kernel is an exponential function; it is a Gaussian, after all.

K(zi,z;) = exp(—1l|zi — z;]2) fory > 0

Recall from your studies of the fluxions and fluents that the series expansion of an exponential has all powers of
the coordinate and converges for all values of the coordinate.

n $2 .’33

] :1+$+E+¥+"‘

et =

L[
3|8

n

So when the Radial Basis kernel does its work of lifting the data into a high-dimension space, it is going all the
way! As it turns out, for many well-behaved decision boundaries, such an infinite expansion is hardly necessary. If
that is indeed the case, then we have a way forward; we can engineer synthetic features in the Analytic Data Set
(ADS), and in the process learn something about the Multiphysics of the data-generating function for the problem
set.

Multivariate Logistic Regression with Causal Factors

Let’s use this idea to see whether we can embellish our ADS to help the Logit make a good, interpretable
classification of our class on our rectangular decision boundary. Recall at the top of this article that the Logit failed
miserably on the data itself. Following Taylor, let's add the quadratic terms of each Cartesian x-y pair, including the
cross term.

It turns out that this humble exercise is well-grounded in functional kernel theory. The quadratic terms, with cross
terms, comprise the Homogeneous Polynomial kernel with parameter d = 2. See Nonlinear Classification here
(https://en.wikipedia.org/wiki/Support-vector_machine).

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 30/34

1/26/2020 Industrial & Applied Mathematics

R has a function to to this work, but let’'s do it manually to watch it work.
df_$x2 <- df_$x * df_$x
df_$y2 <- df_$y * df_3%y

df_$xy <- df_$x * df_$y

str(df_)

'data.frame': 450 obs. of 7 variables:

¢ Item : int 123 4567 89 10 .

#t $ x : num -0.174 -1.548 -0.401 -1.859 -0.463 ...

$y : num -0.5612 -1.4956 -0.1492 -0.7482 0.0522 ...
$ class: int 1111111111...

#t $ x2 : num ©.0304 2.3962 0.1608 3.4558 0.2147 ..

$ y2 : num ©0.31498 2.23696 ©.02226 0.55978 0.00272 ...
$ xy : num ©.0979 2.3152 ©.0598 1.3909 -0.0242 ...

So we now have the linear terms and the second-order terms for each datum. Let’'s see whether the Logit can find

a decision boundary on for this dataset where it was unable to do so before, supra. Folowing our work program,

let's see how well the Logit memorizes the data under the supervision of a label.
y_ <- df_$class

y_<-y_-1

X_ <- as.data.frame(cbind('x'=df_$x, 'y'=df_$y, 'x2'=df_$x2, 'y2'=df_$y2,

glm_ <- suppressWarnings(glm(y_ ~ ., data=X_, family=binomial(link='logit')))

y_hat_ <- suppressWarnings(predict(glm_, newdata=X_, type='response'))

table(class=y_,classifier=y _hat_ >= 0.5)

classifier

class FALSE TRUE
H#H# 0 150 0
1 0 300

‘xy'=df_$xy))

Wow! There you have it. We did not need all powers of x and y via the Radial Basis kernel to lift the data and slip a

hyperplane between the classes. Simple quadratic terms from the Homogeneous Polynomial kernel of Degree 2
did the trick, at least on the memorized dataset itself. Let’s follow our work program to see whether we are overfit.

Remember, we get a hint of that by observing the degradation of Accuracy when predicting on heretofore unseen,

withheld test data. We will partition an 65/35 split and predict first on the memorized training set followed by the

testing set.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html

31/34

1/26/2020 Industrial & Applied Mathematics

set.seed(137)

n_ <- nrow(df_)

set.seed(137)

runif_ <- runif(n_, 0,1)

which_train_ <- which(runif_ <= 0.65)

which_test_ <- which(runif_ > 0.65)

y_ <- df_[which_train_, 'class']

y_<-y_ -1

X_ <- as.data.frame(cbind('x'=df_[which_train_, 'x'],
'y'=df_[which_train_,'y'],
'x2'=df_[which_train_,'x2'],
'y2'=df_[which_train_,'y2"'],
'xy'=df_[which_train_,'xy']))

glm_ <- suppressWarnings(glm(y_ ~ ., data=X_, family=binomial(link="'logit')))

y_hat_ <- suppressWarnings(predict(glm_, newdata=X_, type='response'))

table(class=y_,classifier=y_hat_ >= 0.5)

#it classifier
class FALSE TRUE
it 0 100 (%]
#H# 1 0 192

The Logit memorized the training data, as expected, but are we overfit? Now for the ultimate test. Do the quadratic
features provide sufficient dimensionality that the Logit can predict on heretofore unseen, withheld, testing data?

y_ <- df_[which_test_, 'class']

y_<-y_ -1

X_ <- as.data.frame(cbind('x'=df_[which_test_ ,'x'],
'y'=df_[which_test_,'y'],
'x2'=df_[which_test_,'x2'],
'y2'=df_[which_test_,'y2'],
'xy'=df_[which_test_, 'xy']))

y_hat_ <- suppressWarnings(predict(glm_, newdata=X_, type='response'))

table(class=y_,classifier=y_hat_ >= 0.5)

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 32/34

1/26/2020 Industrial & Applied Mathematics

H## classifier
class FALSE TRUE
#it 0 50 (%]
1 0 108

Fantastic! The quadratic terms provide all the dimensionality we need for Logit to discover this rectangular
decision boundary. But have we learned anything about the Multiphysics? Unfortunately not.

summary(glm_)

##

Call:

glm(formula = y_ ~ ., family = binomial(link = "logit"), data = X_)
##

Deviance Residuals:

Min 10 Median 3Q Max
-6.936e-05 -2.100e-08 2.100e-08 2.100e-08 5.990e-05
##

Coefficients:

#HH Estimate Std. Error z value Pr(>|z|)

(Intercept) -93.9670 30817.0754 -0.003 0.998

X -0.4995 4465.0423 0.000 1.000

y -0.4904 4057.3086 ©0.000 1.000

x2 12.4307 3735.4655 0.003 0.997

H## y2 12.4081 3750.3879 0.003 0.997

xy -4.0563 3665.4883 -0.001 0.999

##

(Dispersion parameter for binomial family taken to be 1)
##

H## Null deviance: 3.7531e+02 on 291 degrees of freedom
Residual deviance: 2.1135e-08 on 286 degrees of freedom
AIC: 12

##

Number of Fisher Scoring iterations: 25

None of the odds are statistically significant and the standard error of the estimate completely subsumes the
estimate itself. Logit found the boundary, so the machine-learning technician’s work is done here, but the data
scientist’s work is only beginning.

The scientific question is, “What data-generating function could/would beget the dataset? What process in nature
draws a rectangular decision boundary?” Remember Fermi, we must have a compelling economic or physical
theory or a strong axiomatic mathematical foundation before our work is done, so while the machine-learning
technician is celebrating the confusion matrix that shows the perfect classification, the data scientist is still at work.

Closing Thoughts

Of course, in this hypothetical instance, there is not a DGF to be found exactly because this data was
manufactured for this hypothetical. In that sense, Trees’ business rules are indeed the correct insight.
Nevertheless, Regression’s contribution is absolutely integral to the scientific prosecution of the hypothesis; to

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 33/34

1/26/2020 Industrial & Applied Mathematics

suspect that something is true based on superior classifications of SVM, Trees, or Forests is very, very different
than knowing that something is true based on the negative result of Regression that is supported by statistical
advice.

file:///C:/D/rectangular/r/rectangularDecisionBoundary.html 34/34

