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Abstract

Support Vector Machines (SVM) is the crown jewel of optimization theory and has become a very 

popular tool for classification. SVM is easily invoked by any machine-learning library. It can calculate a 

curvilinear decision boundary by lifting the inseparable classes into a higher N-Dimensional space 

where an [N-1]-Dimensional hyperplace can separate the data with remarkable accuracy, precision, and 

recall; however, like many advanced algorithms in optimization theory, notwithstanding the algo’s ability 

to classify a class, no insight into the problem set’s data-generating function is obtained by applying the 

SVM algorithm. Of course, if the DGF’s causal factors are unknown or unknowable, and a classification 

must be made, SVM is unsurpassed, but in industrial and applied mathematics, there is a strong 

interest in indentifying causal factors that affect the revenue, costs, margins, and profits of the business 

firm so that predictive and prescriptive algorithmic tools can be deployed to optimize operations. In this 

problem space, multivariate linear regression with causal factors is unsurpassed. This article shows 

how a curvilinear decision boundary that is the purview of SVM can be transformed to a linear decision 

boundary with elementary analytical techniques, where logistic regression can make a perfect 

classification. We celebrate Vapnik’s SVM, but we argue that its problem domain is far downstream 

from the typical industrial problem set, and indeed that elementary analytics can take you far when 

coupled with causal factors and traditional regression algorithms for scoring and classification. 



Discussion

William Faulkner and Ernest Hemingway had an erudite, public disagreement. Faulkner resented 

Hemingway’s terse, concise, compact prose, which no doubt was informed if not preordained by 

Hemingway’s long stint as a newspaper correspondent with the Kansas City Star and Toronto Star 

Weekly. Western Union charged by the word, so concision was key. Furthermore, Hemingway was in 

esteemed company of journalism alumni - Mark Twain, Stephen Crane, Theodore Dreiser, and Sinclair 

Lewis, among others, once wrote by the column inch. Faulkner was unimpressed by the association. 

He said of Hemingway that Hemingway had no courage, that he had “never been known to use a word 

that might send the reader to the dictionary.”

Hemingway was having none of it. “Poor Faulkner. Does he really think big emotions come from big 

words? He thinks I don’t know the ten-dollar words. I know them all right. But there are older and 

simpler and better words, and those are the ones I use.”

Simple tools, in the hands of the master, take you far.

I reflect on this exchange often in my professional practice of industrial and applied mathematics. There 

are many powerful software packages available to machine-learning technicians, and the algorithms 

are the result of decades of advancements in optimization theory. The algorithms can mine the data to 

recognize even the most subtle and obscure patterns, and cluster, associate, correlate, score, and 

classify even the most seemingly intractable datasets. For many of the algorithms, very little 

understanding of the underlying causal factors that produce the data is required, in which case, the 

impressive algorithmic results give little business or industrial insight into the data source and character. 

Root cause can be as elusive after the successful application of the algorithm as before. Nevertheless, 

buoyed by black-box prestidigitation, aspiring data scientists increasingly rely on such statistical 

packages at the expense of root-cause business analysis.

(At least) two things are missing in this approach.

First, the role of the scientist is understanding. In the context of data-science discovery, understanding 

emerges from investigating, hypothesizing, testing, identifying, and validating the mathematical, 

physical, statistical, and geometrical properties that characterize the problem set’s data-generating 

function. It is from this model that reproducible, tunable, predictive, and prescriptive analysis is 

possible.

This vocation is not for the faint at heart. The analyst must lean into the problem and challenge the 

mathematics, perhaps with unrequited enthusiasm; despite the analyst’s best efforts, the problem may 

not budge. We kiss many proverbial frogs. We punt. A lot. Progress sometimes becomes regress. 

Alternating periods of disappointment, confusion, elucidation, sleeplessness, and fleeting excitement 

are constant companions until the problem is cornered in a cul-de-sac of analysis and the solution 

stands tall and alone. It is the answer because it could be no other. And no sooner than that solution is 

deployed do we start again.

It is this dogged, blue-collar, full-contact, actively-engaged, erudite analysis that is the corpus of 

scientific discovery. It is the nimble, dexterous, virtuosi application of maths, Multiphysics, statistics, 

hypothesis testing, and simulation all to isolate and explain a conjectured effect that may have no 



discernable cause using an experiment that may not work, and subsequently prevailing after all of that. 

It is for this immutable reason that we scientists can immediately recognize one of our own; the craft is 

both wide and deep. Especially deep.

Secondly, despite the outrageous claims of software vendors and the preternatural aspirations of young 

data “scientists,” black-box software algorithms cannot replace this understanding, else dexterity with 

TurboTax would qualify one as a tax attorney or Quicken as a chartered accountant.

Armed with software that seemingly – but importantly, not actually – outpaces one’s numeracy, it is 

common sport for young aspiring data scientists to apply the most powerful machine-learning 

algorithms to even the most tractable analytic problem sets and, in the process, to forego mathematical 

and statistical analysis en route to classifying, scoring, clustering, and associating data. Sometimes the 

software is faithful to the Hippocratic Oath to first do no harm, then help, but sometimes not. It is a fool’s 

errand exactly because the goal of the craft is not to make the classifications and calculate the scores, 

but rather to discern the causal factors that comprise the data-generator of the data.

This small article uses an illustrative problem set in a seemingly non-linear decision boundary to 

benchmark one of optimization theory’s crown jewels, the Support Vector Machine, to highlight the 

power of this amazing algorithm to learn a seemingly intractable decision boundary.

We then improve on this result by applying analysis and invoking an old workhorse, the logistic-

regression, to illustrate how domain knowledge and elementary mathematical tools can take us far. 

Vapnik and the 20th century’s optimization-theoretical gems are to be celebrated, but Archimedes, 

Pythagoras, Decartes, Newton, and Gauss are our guides for a good long while in this business.

Let’s get started.

Analysis

We will use the kernlab library and its spiral dataset as our muse.

https://cran.r-project.org/web/packages/kernlab/vignettes/kernlab.pdf (https://cran.r-

project.org/web/packages/kernlab/vignettes/kernlab.pdf)

The kernlab library contains several datasets, and its spirals dataset is particularly useful for our 

experiment. Load the spirals data and take a look/see of the data.

data(spirals) 

plot(spirals)



Examine the structure of the spirals dataset

str(spirals)

##  num [1:300, 1:2] 0.812 -0.268 0.374 0.258 -0.847 ...

It seems that the spirals dataset comes to us as a 2-D matrix. Confirm that spirals is an R matrix

class(spirals)

## [1] "matrix"

It is indeed a matrix object. Convert it to a dataframe and examine its structure.

df_ <- as.data.frame(spirals) 

str(df_)

## 'data.frame':    300 obs. of  2 variables: 
##  $ V1: num  0.812 -0.268 0.374 0.258 -0.847 ... 
##  $ V2: num  -0.9871 -0.3255 -0.0129 0.0413 0.3294 ...

So it is a spiral system of two interlaced rotations. There are two features in the dataframe, which we 

can see are an x-abscissa and y-ordinate in rectangular coordinates. Rename the features ‘x’ and ‘y’ 

and confirm by observing the structure, above.

names_ <- c('x_','y_') 

names(df_) <- names_ 

str(df_)



## 'data.frame':    300 obs. of  2 variables: 
##  $ x_: num  0.812 -0.268 0.374 0.258 -0.847 ... 
##  $ y_: num  -0.9871 -0.3255 -0.0129 0.0413 0.3294 ...

There are two interlaced spirals with abscissa and ordinate for each point, but there is no class 

membership indicated in the data. We can do spectral decomposition on the spirals and attach a class 

identification to the data frame using the kernlab package.

Physically, the two spirals suggest a data-generating function (and perhaps its twin) that is producing 

two identical telemetry streams that have a phase difference of pi radians. If we were gathering the data 

from our own experimental apparatus, we would design the experiment to denote the phase of the 

generating function, but in this illustrative case the data comes to us without labels, so we must apply 

spectral methods. We will apply the kernlab specc function and ask for two centers, which we 

determine from observation of the preliminary visualization, above. Store the specc object in the 

spiral_centers_ variable and examine the structure of the specc object.

spiral_centers_ <- specc(spirals, centers=2) 

str(spiral_centers_)

## Formal class 'specc' [package "kernlab"] with 5 slots 
##   ..@ .Data   : int [1:300] 2 2 1 1 2 1 1 1 2 1 ... 
##   ..@ centers : num [1:2, 1:2] -0.0177 0.02 0.1775 -0.1761 
##   ..@ size    : int [1:2] 150 150 
##   ..@ kernelf :Formal class 'rbfkernel' [package "kernlab"] with 2 slots 
##   .. .. ..@ .Data:function (x, y = NULL)   
##   .. .. ..@ kpar :List of 1 
##   .. .. .. ..$ sigma: num 369 
##   ..@ withinss: num [1:2] 118 117

There is a LOT of information in the spiral_centers_ specc object. Convert the specc object to a 

dataframe and table the class assignments.

df_sc_ <- as.data.frame(spiral_centers_) 

table(df_sc_)

## df_sc_ 
##   1   2  
## 150 150

There are 300 points in the spirals matrix, with an exact 50/50 split between classes. The authors of 

kernlab package engineered 150 points for each of the two series. Extract the class from the .Data 

attribute of the sc_ object



rows_ <- dim(df_sc_)[1] 

class_ <- df_sc_[1:rows_,1] 

class_

##   [1] 2 2 1 1 2 1 1 1 2 1 1 2 2 1 1 2 2 2 2 2 1 1 2 1 1 1 1 2 2 2 1 2 1 1 2 1 2 
##  [38] 1 2 2 1 1 1 1 2 2 2 2 2 1 2 1 2 2 1 1 1 2 2 2 2 2 1 1 2 1 2 2 2 1 1 2 1 1 
##  [75] 1 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 2 
## [112] 1 2 2 2 2 1 1 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 2 1 2 2 2 1 
## [149] 1 1 2 1 1 1 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 2 2 1 1 2 2 2 1 1 
## [186] 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1 2 2 2 1 
## [223] 1 1 1 2 2 2 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1 1 2 2 2 2 
## [260] 2 2 2 1 1 1 1 2 1 2 1 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 1 1 1 2 1 2 1 1 2 2 
## [297] 1 1 1 2

In general, we are agnostic about labels, but in this case, we are going to write a lot of downstream 

processing that relies on the orientation of the labels on the two spirals. We need the labels to be

1,1,2,2,1,2,2,2,1,2,2,…2,2,2,1

and not

2,2,1,1,2,1,1,1,2,1,1,…1,1,1,2

So having let the specc function do its magic, let’s manhandle the labels and set them as we require. 

Do the substitution and examine the class assignments once more.

if(class_[1] == 2){ 

  class_ <- ifelse(class_ == 1, 2, 1) 

} 

class_

##   [1] 1 1 2 2 1 2 2 2 1 2 2 1 1 2 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 1 2 2 1 2 1 
##  [38] 2 1 1 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1 1 1 2 2 1 2 2 
##  [75] 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 2 2 2 1 
## [112] 2 1 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 
## [149] 2 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 2 1 1 1 2 2 1 1 1 2 2 
## [186] 2 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 1 1 1 2 
## [223] 2 2 2 1 1 1 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2 2 1 1 1 1 
## [260] 1 1 1 2 2 2 2 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 1 
## [297] 2 2 2 1

Now attach the class to the dataframe.



df_$class_ <- class_ 

str(df_)

## 'data.frame':    300 obs. of  3 variables: 
##  $ x_    : num  0.812 -0.268 0.374 0.258 -0.847 ... 
##  $ y_    : num  -0.9871 -0.3255 -0.0129 0.0413 0.3294 ... 
##  $ class_: num  1 1 2 2 1 2 2 2 1 2 ...

Now that we have identified class membership to each Cartesian coordinate, let’s plot the two spirals 

separately to get a reference and make it easy on the eyes once we begin analysis. Let’s start with the 

first class and plot with the class labels and fill Class # 1 with black color.

Note that from a polar-coordinate point-of-view, the series spans {r,theta} approximately from {0.40, 1 * 

pi} to {1.5 , 4 * pi}.

subset_1_ <- subset(df_,df_$class_ == 1) 

filled_circle_ = 16

plot(x=subset_1_$x_, y=subset_1_$y_, type='p',col="black", cex=subset_1_$class_*.5, pc
h=filled_circle_, xlab='x', ylab='y') 

legend("topleft",legend=c("1"),fill=c("black"))

Note that I have introduced a bias from my work in the complex plane. The inner points at the start of 

the spiral data series with abscissa ~ -0.4 and ordinate ~ 0.0 are most-likely in the 3rd quadrant, which 

in terms of such analysis is often said to be - 1 x pi clockwise from the x-axis. And indeed if you ask a 

software package’s arc-tangent function, it would indeed be labeled as such, and we will indeed see 

that behavior infra. Those who have worked in the complex plane or polar coordinates might prefer to 

think in an anti-clockwise orientation from the positive x-axis, in which case the very same points are 

said to be + 1 x pi anti-clockwise from the x-axis. It is seemingly the same place, if you consider the 



plane to be 360-degrees in range, but the complex plane imposes no such limitation. In the metaphor of 

the complex plane, the points at {x,y} ~ {1.5, 0.0} are said to be + 4 * pi anti-clockwise from the positive 

x-axis.

A few quick observations. Notice that most of the black #1 series sit on a nice curvilinear spiral, but 

there are regions of the arc where the points are experiencing some kind of stochastic or systemic 

noise. For example, the points in the region from {x,y} = {+0.25, +0.6} to {-0.5, +0.6} fall off of the 

smooth arc. Likewise for those another pi/2 along the arc in the {x,y} region ~ {-1.0, +0.4} to {-1.0, -0.5}. 

And most of the points along the final length of arc where y ~ -1.0 are jittery. More on this infra.

Now for class #2. From a polar-coordinate point-of-view, the series spans {r,theta} approximately from 

{0.40, 0} to {1.5 , 3 * pi}

subset_2_ <- subset(df_,df_$class_ == 2) 

filled_circle_ = 16

plot(x=subset_2_$x_, y=subset_2_$y_, type='p',col="red", cex=subset_2_$class_*.5,pch=f
illed_circle_, xlab='x', ylab='y') 

legend("topleft",legend=c("2"),fill=c("red"))

Note the areas of stochastic or systemic jitter.

With that reference work done, we are ready to re-plot the entire data set and show class membership. 

Let’s plot the spirals with the class labels and fill based on class.

filled_circle_ = 16

col_ <- c("black","red") 

plot(x=df_$x_, y=df_$y_, type='p',col=df_$class_, cex=df_$class_*.5 ,pch=filled_circle
_, xlab='x', ylab='y') 

legend("topleft",legend=c("1","2"),fill=col_)



The spirals are somewhat unsatisfying if we wish to express these points in a rotational reference 

frame. The first few inner points of each spiral seem to straddle the x-axis, and it would very pleasing to 

have those points cleanly demarked by the Cartesian coordinate system so that Cartesian-to-Polar and 

trigonometric transforms would be maximally elegant. Let’s add an AB line as a straight edge to test 

and validate that observation

filled_circle_ = 16

col_ <- c("black","red") 

plot(x=df_$x_, y=df_$y_, type='p',col=df_$class_, cex=df_$class_*.5, pch=filled_circle
_, xlab='x', ylab='y') 

abline(h=0) 

legend("topleft",legend=c("1","2"),fill=col_)

It is really only a couple of data points, but it would be much more satisfying to rotate the system to 

begin the spirals in a more analytically-tractable starting position. Let’s rotate the system by 10 degrees 

= 10 * pi / 180 radians.



Recall from linear algebra that we can rotate Cartesian coordinates by constructing the rotation matrix 

R where R is

A vector v can be rotated in Cartesian coordinates through an angle theta by calculating Rv in this 

manner

The R statistical language has a code line to accomplish this, but for illustrative purposes, let’s build the 

rotation matrix R from scratch in Base R.

First we build the [2x2]-dimensional rotation matrix R, then copy the data frame’s x and y coordinates 

into a [300 x 2]-dimensional vector v. We are then in position to rotate the v matrix by calculating Rv. 

There is a small linear-algebraic task. Matrix multiplication requires that the two inner dimensions 

match, and as it is written, R is [2x2]-dimensional and v is [300 x 2]-dimensional, so we must transpose 

v to do the multiplication, then transpose matrix product back to its [300 x 2]-dimensional state. The t() 

function does transposition in Base R, so the linear algebraic gymnastics are t(R %% t(v)), where the 

’%%’ operator is matrix multiplication in Base R. Then we will re-attach the feature names for x, y, and 

class, and store the rotated dataset in a new dataframe called df_rot.

So, to rotate the dataset 10 degrees = 10 * pi/180 radians counterclockwise, we must do the following:



theta_ = 10 * pi / 180
R <- matrix(1:4, nrow = 2, ncol = 2) 
row_1_ <- c(cos(theta_), -sin(theta_)) 
row_2_ <- c(sin(theta_), cos(theta_)) 
R <- rbind(row_1_, row_2_) 

v <- as.matrix(cbind(df_$x_, df_$y_)) 

df_rot_ <- as.data.frame(t(R %*% t(v))) 
names_ <- c('x_','y_') 
names(df_rot_) <- names_ 

df_rot_$class_ <- df_$class_ 

filled_circle_ = 16

col_ <- c("black","red") 

plot(x=df_rot_$x_, y=df_rot_$y_, type='p',col=df_rot_$class_, cex=df_rot_$class_*.5, p
ch=filled_circle_, xlab='x', ylab='y') 

abline(h=0) 

legend("topleft",legend=c("1","2"),fill=col_)

That cleaned up our data quite nicely. Our spirals now begin cleanly in a single Cartesian quadrant, 

which will facilitate our downstream analysis.

Now the question is whether we can build a classifier that can learn this crazy dataset and classify a 

given point to its class, and if so, then with what accuracy, precision, and recall? It is a very heavy lift to 

do so since the intuitive decision boundary is not simply curvilinear, but it is curvilinear of increasing 

radius; that is, the decision boundary is itself a spiral that is situated between the two interlaced spirals 

of the dataset. I mean, if our toolbox was say the logistic regression algorithm, then we would be tasked 



with fitting a linear decision boundary in this crazy spiral data. This problem bears no resemblance to 

the illustrative problem sets for algorithms such as the logistic regression that draw a linear decision 

boundary between two classes.

We can certainly do that calculation, but the quality metrics – accuracy, precision, recall, the lot – are, 

shall we say, not of industrial quality, at least not if we have value at risk in the form of life, limb, or 

money damages.

Actually, the facious illustration above can be improved; try to convince yourself that the actual 

boundary would be along the x-axis. That decision boundary would orphan the fewest number of both 

black and red points and capture as much of the zeroth-order linear classifications possible.

There is an amazing classifier called the Support Vector Machine that was invented in 1963 by Vladimir 

Vapnik and Alexey Chervonenkis, who defined the linear classifier that was extended to the non-linear 

classifier in 1992 by Bernhard Boser, Isabelle Guyon, and Vapnik. For the non-linear case, they 

employed a technique termed the kernel trick that lifts the N classes of data into an N-dimensional 

space where it can be separated by an [N-1]-dimensional hyperplane.

The SVM is an inspirational application of Lagrangian optimization theory that allows the algorithm to 

“learn” the characteristics of an unseen dataset, construct the widest practicable margins between the 

classes, and predict a classification of the classes for excellent accuracy, precision, and recall.

In the R statistical language, we invoke SVM with the ksvm function. We first load the class into the y 

variable, and construct the analytic data set (ADS) X as the x and y Cartesian coordinates of the 

rotated data frame. We then invoke the ksvm algorithm and ask it to use the Gaussian radial basis 

kernel, which is simply the exponential function.

Recall from the Calculus that the Taylor exapansion of the Exponential function has all powers of the 

argument and converges for all values of the ordinate.

Operationally, the SVG kernel trick using the Gaussian Radial Basis Kernel lifts the data into a very high 

dimensional space using synthetic features of all powers of x and y, where the two classes can be 

separated with a hyperplane.

In the illustration, the Gaussian Radial Basis Function Kernel is able to classify data that is separated 

by a circular (not spiral in the illustration, but circular) by lifting the dataset into a high-dimensional 

space where a hyperplane can easily separate and classify the data.



The R statistical language exposes the ksvm wrapper to the Support Vector Machine algorithm. We 

load the target class into the y variable and the Cartesian abscissa and ordinate into an analytic data 

set (ADS), X. We choose the Gaussian Radial Basis Function kernel, rbfdot, and invoke the algo. For 

this purpose, we predict directly back on the training set and write a confusion matrix. I have been 

working on this writing for a few days, and every so often, I copy the results of the SVM into the code 

block and comment it for comparison. You can see that the SVM performs brilliantly with only a handful 

of false positives and false negative among the 300 data points, for extraordinary accuracy, recall, and 

precision.

y_ <- df_rot_$class_ 

y_ <- y_ - 1

X_ <- as.data.frame(cbind(df_rot_$x_, df_rot_$y_)) 

ksvm_ <- ksvm(y_ ~ ., data=X_,kernel='rbfdot') 

y_hat_ <- predict(ksvm_, newdata=X_, type='response') 

table("class"=y_, "classifier" = y_hat_ >= 0.5)

##      classifier 
## class FALSE TRUE 
##     0   101   49 
##     1    52   98



#      classifier
# class FALSE TRUE
#     0   TN   FP
#     1   FN   TP

# Confusion matrix from a prior run
#      classifier
# class FALSE TRUE
#     0   147    3
#     1     6  144

# Confusion matrix from a prior run
#      classifier
# class FALSE TRUE
#     0   147    3
#     1     3  147

# Confusion matrix from a prior run
#      classifier
# class FALSE TRUE
#     0   147    3
#     1     2  148

This is raw genius. Having no knowledge whatsoever of the data-generating function, the SVM was 

able to classify all but five data perfectly using the radial-basis kernel to lift the points into a higher-

dimensional space. In the Cartesian plane,they are separated by an intractable non-linear decision 

boundary, but in the higher-dimensional space of the Gaussian Radial Basis Function, the SVM was 

able to classify nearly perfectly.

Having applied our crown jewel of optimization theory to the problem, let us now apply a bit of 

mathematical analysis to see just how far elementary techniques can take us toward classifying the two 

classes.

The work of a scientist, even a data scientist, is very often asking and answering the question, “What is 

the natural coordinate frame for this problem set?” Very often, a difficult problem in one coordinate 

system is trivial in another. Our system is spiral and rotational in nature, and it is natural to wonder how 

these data visualize under a Cartesian-to-Polar mapping. Let’s do that work and take stock once we are 

there.

Recall from your junior high school days that we can transform {x,y} to {r, theta} with the 

transformations



where the atan2 function returns the proper quadrant for the point based on the signs of x and y when 

the atan function would be confused based on the sign of the ratio y/x.

Calculate the r and theta values, add them to the rotated dataframe, and plot once again. Bear in mind 

that

Black Class = #1, {r,theta} from {0.25, +1 * pi} to {1.5 , +4 * pi} Red Class = #2, {r,theta} from {0.40, 0} to 

{1.5 , +3 * pi}

but that we expect the atan2 function to return these values as follows:

Black Class = #1, {r,theta} from {0.25, - 1 * pi} to {1.00 , + 1 * pi} AND from {1.00, - 1 * pi} to {1.50 , + 1.* 

pi}

and Red will be ever so slightly messier:

Red Class = #2, {r,theta} from {0.10, zero } to {0.7 , + 1 * pi} AND from {0.60, -1 * pi } to {1.4 , + 1 * pi} 

AND just a couple of data points at {1.4, - 1 * pi }

Whew! That makes the head spin! Let’s let the math do our work:

df_rot_$r_ <- sqrt(df_rot_$x * df_rot_$x + df_rot_$y * df_rot_$y) 

df_rot_$theta_ <- atan2(df_rot_$y,df_rot_$x) 

plot(y=df_rot_$theta_, x=df_rot_$r_, type='p',col=df_rot_$class_, cex=df_rot_$class_*.
5, pch=filled_circle_, xlab='r', ylab='theta') 

legend("topleft",legend=c("1","2"),fill=col_)



In {r, theta} space, the data that are spirals in {x, y} space, are linear. Now, here is an interesting fact 

about this plot. Each 2 * pi traunch of data is depicted in r-theta space as a linear association of points. 

That has a rather deep meaning; it means that the derivative dr/dtheta is constant.

This result is not a revelation. Archimedes observed this relationship in the 3rd-century BC when 

working with his collaborator, Pappus, but Archimedes reached back even further in the history of 

mathematical thought to attribute the spiral analytics to Conon of Samos.

Archimedes 

Archimedes and Pappas were able to concisely describe the spiral curve with a simple linear equation 

in {r, theta}

Now the fact(oid) that the spiral is within a simple transform of being linear is astonishing, and it puts 

an entire 2500-year old analytic toolbox in our hands with which to analyze the mathematical, physical, 

and statistical character of these data.

So having transformed the spirals into polar coordinates, we can read off the characteristic gradient and 

use it to separate the points.

There are 3 tasks in this POC 

1. The two red points at {1.4, -3.0} must be raised dy = 2 * pi 

2. The black points starting at {1.0, -3.0} must be raised dy = 2 * pi 

3. The red points starting at {0.6, =3.0} must be raised by dy = 2 * pi 



Let us focus on the two points at {1.4, -3.0}

There is a boundary between these two points and the black scatter line that begins at {1.0, -3.0}. If we 

were working on an industrial problem where an approximation would not do, we could perform the 

regression on Archimedes’ Spiral; that is, we could perform a linear regression on those points to 

discover the gradient of that scatter plot, then translate it downward algebraically, and indeed that is 

what we would do in an IIoT Use Case, since such a use case would require accuracy and precision, 

but in this POC, we can approximate perfectly well for illustrative educational purposes.

The gradient dr/dtheta = m = delta_y/delta_x = (-1.25 + 3)/(1.4 - 1.2).

In this first disambiguation exercise, we want to add 2 * pi to the theta value of those two points. Let’s 

use the point {1.2, -3.0} to write down the equation for the point-slope form of the line. Remember, the 

point-slope form is:

In this context then, we have

(y +3) = (-1.25 + 3)(x - 1.2)/(1.4 - 1.2).

That’s it.

Remember, that is a characteristic slope of this Multiphysics and the slope of these scatter plots are 

inticately related to the “tightness” or “coil” of Archimedes spiral. It is a global characteristic of the 

Multiphysics of this data-generating function, so once we have it, we don’t need to do that hard work 

any more for the duration of this IIoT project.

Let’s calculate it explicitely right now:

m_ <- (-1.25 + 3)/(1.4 - 1.2) 

paste('The slope is:', m_, sep=" ")

## [1] "The slope is: 8.75"

Ok, so the characteristic slope, which is intricately related to the dr/dtheta gradient of Archimedes spiral 

is 8.75, and that is a constant for the duration of this analysis. Indeed, we could use that value, and 

deviations from that value, do perform change-point detection on the telemetry streams to flag 

anomalies, which is how you couple machine learning with reliability engineering, but that is the topic 

for another day.

Now we simply solve for y as a function of x, and we are ready to shift those two red points at {1.5, -3 * 

pi} We have:

This lets us parameterize the problem so that we could programmatically clean up this transformed 

data traunch-by-traunch. Those two points that we are after {1.4, - 1 x pi}, so we can programmatically 

refer to them unambiguously as



“the two points that are under the line (y - y1) = m(x - x1) –> (y + 3) = 8.75(x - 1.2).”

The point-slope form of the line allows us to lazily observe a single charactistic point that is in the 

margin region between the black and red scatter lines, plug them into the point-slope equation, and lift 

the points by the requisite 2 * pi radians.

Here we go:

x1 <- 1.2
y1 <- -3.0

df_rot_$theta_ <- ifelse(df_rot_$class_ == 2 & df_rot_$r_ > x1 & df_rot_$theta_ < (m_ 
* df_rot_$r_  + y1 - m_ * x1), 
                         df_rot_$theta_ + 2 * pi, 
                         df_rot_$theta_) 

plot(y=df_rot_$theta_, x=df_rot_$r_, type='p',col=df_rot_$class_, cex=df_rot_$class_*.
5,pch=filled_circle_, xlab='r', ylab='theta') 

legend("topleft",legend=c("1","2"),fill=col_)

That worked brilliantly. We lifted the two outlying red points up to their mates on the lower red scatter 

line. Let’s continue working on the red dots and lift the lower scatter line up to their mates in the upper 

red scatter line.

We already have the slope, which is a characteristic constant of this system’s data-generating 

function’s Multiphysics remember, so all we need to do is read off a {x0,y0} point for the point-slope 

form of the linear margin.

It looks like {0.45, -3} is a good point in the margin, so our line will be:



x1 <- 0.45
y1 <- -3.0

df_rot_$theta_ <- ifelse(df_rot_$class_ == 2 & df_rot_$r_ > x1 & df_rot_$theta_ < (m_ 
* df_rot_$r_  + y1 - m_ * x1), 
                         df_rot_$theta_ + 2 * pi, 
                         df_rot_$theta_) 

plot(y=df_rot_$theta_, x=df_rot_$r_, type='p',col=df_rot_$class_, cex=df_rot_$class_*.
5, pch=filled_circle_, xlab='r', ylab='theta') 

legend("topleft",legend=c("1","2"),fill=col_)

That worked perfectly. Let’s do our work on the black scatter line at {1.0, -2.0}. Just eyeballing the 

margin suggests that maybe {0.5, -2.0} is clearly in the margin. Let’s try it. Again, if this were the 

solution to an industrial-grade IIoT problem set, we would not guess; we would do the linear regression 

and do it right, but for this illustrative purpose, given the beautifully wide margins, we can eyeball it.



x0_ <- 0.7
y0_ <- -2.0

# Now any Class == 2 that is below the line y = 7x - 5.8 must be shifted up 2 * pi

df_rot_$theta_ <- ifelse(df_rot_$class_ == 1 & df_rot_$r_ > x0_ & df_rot_$theta_ < (m_ 
* df_rot_$r_ + y0_ - m_ * x0_), 
                         df_rot_$theta_ + 2 * pi, 
                         df_rot_$theta_) 

plot(y=df_rot_$theta_, x=df_rot_$r_, type='p',col=df_rot_$class_, cex=df_rot_$class_*.
5, pch=filled_circle_, xlab='r', ylab='theta') 
legend("topleft",legend=c("1","2"),fill=col_)

It is a beautiful thing. Now remember, these linear gymnastics notwithstanding, in an industrial solution, 

we would do a Design of Experiment (DOX) where these angles were captured in the complex plane 

and the angles would run from [zero, infinity) so that the figure above would be captured straight-away 

from the sensor telemetry, but for this illustrative purpose, we let the atan2 function do the reporting, so 

we had this nice educational opportunity to manhandle the scatter lines. Inhale the blessings and 

exhale the gratitude…

We did this work to illustrate how some elementary analysis, maths, and an old workhorse classifier, 

such as logistic regression, could perform against the crown jewel of optimization theory, the Support 

Vector Machine.

Now remember the respect that we have for Vapnik’s Support Vector Machine. It really has no equal in 

non-linear classifiers, and indeed, to do our work here, our first move was to transform the Archimedes 

spirals to a linear form, so we are not equivacating; however, we want to emphasize the point that a 

seemingly intractable linear classification problem like Archimedes spiral does not require the crown 

jewel of optimization theory to draw a decision boundary. Rather, following Archimedes and Decartes, 

we can transform the dataset to its natural coordinates, exploit its linear character in that reference 

frame, and apply linear-classification techniques.



Let’s do it.

We have to suppress Warnings since we actually did a little too well and R’s logistic-regression algo will 

complain that we are overfit, but more on that another day. Here it is.

y_ <- df_rot_$class_ 

y_ <- y_ - 1

X_ <- as.data.frame(cbind('r'=df_rot_$r_, 'theta'=df_rot_$theta_)) 

glm_ <- suppressWarnings(glm(y_ ~ ., data=X_, family=binomial(link='logit'))) 

y_hat_ <- suppressWarnings(predict(glm_, newdata=X_, type='response')) 

table(class=y_,classifier=y_hat_ >= 0.5)

##      classifier 
## class FALSE TRUE 
##     0   150    0 
##     1     0  150

#       classifier
# class FALSE TRUE
#     0   150    0
#     1     0  150

Look at that! A perfect classification on the training set. I should hope so given the HUGE linear margin 

between the two scatter lines in the figure immediately above.

So there you have it. We have solved for a very non-linear classification decision boundary by applying 

some quantitative analysis and our old workhorse, the logistic regression. State-of-the-art optimizaton 

theory is tremendously valuable for certain problem sets, and it is an important investment for the 

aspiring data scientist to make, but the problem sets for which such powerful algorithms are required 

are often beyond the daily work flows of all but the most gifted scientists in the most cutting-edge 

research organizations.


